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Introduction 

The aim of this paper is to provide a set of functions for performing distance-based morphometric 
analysis in R (R Core Team 2013). No previous knowledge of R is necessary. The functions includes 
data import from Excel or tab-delimited text files, descriptive statistics for populations and taxa, 
histograms of characters, correlation matrices of characters, cluster analysis, principal component 
analysis (PCA), linear discriminant analysis (LDA) with permutation tests, classificatory discriminant 
analysis and k-nearest neighbour classification. The use of the functions is demonstrated on a sample 
data set. Detailed descriptions of the functions and examples of the scripts for producing graphics are 
included in this manual.  

Experienced R users are welcome to modify the functions according to their specific needs. I 
would also be grateful for any comments, improvements of the functions or suggestions for additions 
in future versions. 

Citation 

Koutecký P. (2015): MorphoTools: a set of R functions for morphometric analysis. – Plant 
Systematics and Evolution 301: 1115-1121; doi 10.1007/s00606-014-1153-2 

Styles used in this manual 

function The function described in the following paragraph. 
function(parameters) Examples of R commands and functions calls. Anything underlined 

must be replaced by a specific value/name. 
results Names of R functions; results and values printed on screen 

Uptades 

Compared to the previous version (1.01), the following changes were introduced: 
• In cases there were several similar functions differing only in one or two parameters (such as 

reading the data with dot or comma as decimal separator) only one function is retained with 
additional parameters. This leads to fewer function at all and applies for: read.morphodata, 
charhist, cormat, clust, classif.da, knn.select, knn.classif.  

• New functions were introduced to make graphical outputs from PCA and discriminant analysis: 
(a) scatterplots of ordination scores, (b) “arrow” diagram for characters, (c) biplots, (d) function 
adding labels to individual objects, (e) histograms of ordination scores for two-group discriminant 
analysis. For classificatory discriminant analysis, (f) a barplot of posterior probabilities is added. 
These functions replace or much shortens the original graphic scripts. 

• In read.morphodata the spelling has been changed (from “morfodata”) 
• The import function prints the structure str(x) of the imported data frame. 
• charhist prints a taxon code as a part of the x-axis label.  
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Files 

Four files can be downloaded from http://botanika.prf.jcu.cz/systematics/morphotools.html: 
• this manual (MorphoTools manual 1-1.pdf) 
• function definitions (MorphoTools1-1.R) – this file can be directly used as source code in R 
• sample data (SamplaData.txt) – tab-delimited text file containing morphological measurements 

(see the ‘Sample data’ paragraph for details) 
• working protocol (MorphoTools working protocol 1-1.R) – plain text file (.R extension, but can 

be opened as a .txt file) that includes all commands used in the analysis of the sample data 
(including graphics); the commands can be easily copied to R, or the whole protocol can be 
opened in specialised software such as RStudio (see Installation) and directly edited and run. 

Sample data 

The sample data include portions of data sets from previously published studies by Koutecký (2007) 
and Koutecký et al. (2012): 25 morphological characters (see the cited studies for details) of the 
vegetative (stems and leaves) and reproductive structures (capitula and achenes) of three diploid 
species of the Centaurea phrygia complex: C. phrygia L. s.str. (abbreviated “ph”), C. pseudophrygia 
C.A.Mey. (“ps”) and C. stenolepis A.Kern. (“st”). Moreover, a fourth group includes the putative 
hybrid C. pseudophrygia × C. stenolepis (“hybr”). The data represent 8, 12, 7 and 6 populations for 
each group, respectively, and 20 individuals per population, with one exception in which only 12 
individuals were available. All morphological characters are either quantitative (direct measurements, 
counts or ratios) or binary (two characters states or presence/absence). In four characters of achenes, 
there are missing data because fruits were not available in all individuals. In two populations of C. 

stenolepis fruits were completely missing. In total, the data set includes 652 individuals (453 
complete) from 33 populations (31 complete). 

Data structure 

All functions expect the following data structure: (i) one individual is recorded per row; (ii) the first 
three columns include unique identifiers for individuals, populations and taxa/groups, respectively; 
(iii) starting from the fourth column, any number of quantitative or binary morphological characters 
may be recorded; (iv) the first row contains variable names. Any column names can be used (avoiding 
spaces and special characters); the first three columns will be renamed to “ID”, “Population” and 
“Taxon” by the import functions, respectively, because these names are expected by the other 
functions. If mixed populations containing more taxa are present, they must be divided into 
(sub)populations with unique names (i.e., each population consists of a single taxon). If the data set 
does not contain population information, the second Population column should be included with any 
values (e.g.. copy the Taxon column there). The functions for populations will not work, but the others 
will. The columns ID, Population and Taxon are expected to be factors (categorial variables) and not 
numeric variables; if numbers are used, they will be converted to factor levels by the import functions. 
If there are missing values in the data, they must be represented as empty cells or by the text NA (not 
quoted), not zero, space or any other character. 

An example of tab-delimited data file: 

ID Population Taxon SN SF ST SFT ... 

RTE1 RTE hybr 35.2 23.6 58.8 0.40 ... 

RTE2 RTE hybr 39.0 11.8 50.8 0.23 ... 

... 

PREL31 PREL st 47.2 9.1 56.3 0.16 ... 

PREL32 PREL st 57.8 4.0 61.8 0.06 ... 

... 
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Installation 

R and additional packages can be downloaded from http://www.r-project.org/. Follow the instructions 
on the R web page. All functions described here were tested with R version 3.2.3.  

In working with R, it is possible to directly use the console version you will install. However, 
other software can communicate with R and handle your data in more conveniently (if software 
operated by text commands can be called convenient at all). I recommend RStudio 
(http://www.rstudio.com/), which, among other features, allows for the easy editing of R scripts and 
the running of selected parts of the script, highlights the syntax, and provides an instant list of objects 
and functions in the current environment. 

Apart from the base R installation, download and install the following additional packages: 
ade4, class, permut, scatterplot3d, vegan. The packages are most easily downloaded and installed 
from the menu Packages – Install packages. 

After installing R and the packages, set the working directory (menu File – Change dir…), 
copy the file with the function definitions (MorphoTools.R) to the working directory and either read 
it as a source using the menu File – Source R code… or type: 
source("FILE") (replace FILE with the case-sensitive file name and do not to omit the quotes; 

if the file is not in the R working directory, you must enter the whole path, e.g., 
"D:/R/FILE.R") 

Introductory notes (for inexperienced R users) 

There are many text books / web pages that can be used to learn basics of the R environment, such as 
Getting started with R (Beckerman & Petchey 2012), quite comprehensive The R book (Crawley 
2013) or Quick-R webpage (http://www.statmethods.net/) and manuals on R homepage (http://cran.r-
project.org/manuals.html). Here, I highlight only a few points that are necessary to know for using 
MorhoTools functions. 
• R is case sensitive (including the names of objects, functions and function parameters) 
• Text values in function calls (such as external files to be imported, names of taxa, etc.) must be 

enclosed in double quotes (e.g., "taxon"). Function parameters are enclosed in parentheses, while 
individual parameters are usually separated by commas. Be careful not to omit any of these 
symbols; missing quotes etc. are frequent causes of non-functioning code and error warnings. 

• Note that R (unlike Windows) will not ask for confirmation if you command it to delete or 
overwrite something, and these operations are generally irreversible. 

• Most of the functions return new data as results (such as ordination scores, coefficients for 
variables, etc.). You must assign the results to a new object using <- .  When not assigned, the 
results are displayed on a screen and lost. The commands therefore usually have this structure: 
RESULTS<-FUNCTION(data,parameters) 

• R has useful help for built-in functions. To see the help file, simply type a question mark followed 
by the function name: 
?FUNCTION 

• To see an entire whole object, simply write its name (not useful for large datasets). 
• To open table-like objects (data frames, matrices) in a separate window: 

View(data)   # note the capital V in the function name 

• Editing objects (good for functions and small corrections of the data; to edit data tables, it is 
usually easier to open data in an external editor and import the new version into R): 
fix(data) 

• List of objects (including functions and all results you have created) in the current R environment: 
ls() 

• To delete object(s), use the command rm: 
rm(object1,object2,object3,…) 

• To delete everything in the current R environment: 
rm(list=ls()) 
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Introductory notes on graphics (for inexperienced R users) 

• R can produce many types of graphs. However, making graphics through text commands is a 
rather creative process, and the settings of graphical parameters (such as symbol size or colour, 
axis labels, etc.) must be adjusted to fit optimally with the given data. Therefore, graphics 
production can only partly be automated as a function. Instead, examples of figures for the sample 
data and the annotated codes used to generate them are included in this manual. 

• Many graphical parameters can be set within graph-making functions such as plot. Parameters 
may also be set using par, but such settings are permanent and will influence all further plots. 
Therefore, the default settings should be stored in a list and restored from it, if necessary. 
To see all parameters: 
par(no.readonly=T) 

To save the default values into a list: 
default.pars<-par(no.readonly=T) 

To set the values of parameters: 
par(fg="blue") # changing the default (foreground) colour to blue 

par(fg="blue",lty=2) # changing the default colour and the default line type to dashed 

To restore the default values: 
par(default.pars) 

• The parameter mar controls the width of graph margins (bottom, left, top, right). The default 
values are mar=c(5, 4, 4, 2)+0.1, which allows for the display of axis labels, as well as the 
main title and subtitle. Depending on the size of your screen and graphics window, it may be 
useful to adjust these margins. (For example, I rarely use the main title and therefore usually 
reduce the free space at the upper margin.) 
par(mar=c(4.5,4.5,1,2)) 

• The parameter mfrow=c(x,y) divides the graphic window into specified number of subplots in 
x rows and y columns. Each subplot is then successively filled with one graph. This setting is 
typically used to produce several graphs of the same type or of related content (such as box-and-
whisker plots for several morphological characters or plots of ordination scores for objects and 
correlations of characters with ordination axes). 
par(mfrow=c(1,3)) # dividing the graphic window: three subplots in one row  

plot...  # graph 1 

plot...  # graph 2 

plot...  # graph 3 

par(mfrow=c(1,1)) # restoring the default settings (one graph in the whole graphic window) 

• Graphics are easily exported from R in vector formats as metafiles (.emf) or PostScript files (.eps 
or .ps) or PDFs. Direct export to raster formats (.bmp, .jpg, .png, .tif) is also possible through the 
menu Save as… (appears when the window of the graphical device is active), but the resulting 
images are low resolution.  

• To obtain high-quality raster images, it is necessary to wrap the script (one or more lines) used to 
produce the image inside additional two lines, one starting the special graphical device and the 
other closing it after the image is produced. There are four functions, bmp, jpeg, png, tiff 
with the same parameters: file name, width and height, specification of units for width and height 
(px [pixels], in [inches], cm, mm), and resolution in dpi. Note that there are also additional 
parameters, but the default settings usually work well. 
png("File.png",width=15,height=12,units="cm",res=600) 

par... 
plot... 
axis... 

dev.off() 
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Typical workflow and functions 

Data import and control 

read.morphodata imports data from tab-delimited text files; import from Excel spreadsheets 
through the clipboard in Windows also usually works well. The functions is basically the 
read.delim and function, but it also renames the first three columns and convert them into factors 
if necessary. The decimal separator is controlled with a parameter dec: dot (default) or comma [in 
the earlier version of MorhoTools, this was made by two functions read.morfodata and 
read.morpfodata2, respectively]. If there is no population information, the population column 
may be omitted and the file imported with the parameter popul=FALSE; a copy of the taxon column 
will be appended as the population column.  
data<-read.morphodata("file.txt") # default decimal separator (dot) 

data<-read.morphodata("file.txt", dec=",") # setting decimal separator to comma 

data<-read.morphodata("clipboard",popul=F) # import from a clipboard, no population column 

The functions also display the structure of the data using the function str(data). The object’s class 
(should be “data.frame”), dimensions, and a list of its columns and their types and also lists of 
populations and taxa are displayed. The first three columns should be “factor”; check the number of 
levels (populations, taxa) in the second and third columns. All other columns should be “num” 
(numeric) or “int” (integer). The presence of a “factor” among the characters indicates a problem with 
data import (check the decimal used) or in the data themselves (some values may not have been 
recognised as numbers, causing the column to be imported as text).  

Brief summary of the data: 
summary(data) 

This command shows the levels and number of observations within the first 6 levels for factors and 
the min-max values, quartiles and medians for numeric variables. Checking the minimum and 
maximum values often helps to trace errors in data (missing decimal points, etc.). If there are missing 
data (NAs in R terminology) in some variable, the number of observations with missing data is 
indicated. Note that with other types of objects (such as computation results), the generic function 
summary provides different outputs specific to the type (class in R terminology) of the object. 

Other useful functions: 
dim(data) # dimensions (no. of rows/columns) of table-like objects 
length(data) # number of values in a vector or a list 
levels(data$Population) # list of populations 
levels(data$Taxon) # list of taxa 

colnames(data) # list of column names (characters) 

head(data); tail(data) # display the beginning or the end of the data, respectively 

Basic data manipulation 

To make a copy of an object (of any type): 
newdata<-data 

Replacing an object with a new/modified one of the same name as a result of a function (for example, 
the results of functions that omit incomplete rows or modify some columns): 
data<-FUNCTION(data) 

Selecting part of the data. The easiest way to select part of a data frame is the use of subscripts, which 
take the form DATA[ROWS,COLUMS]. For example, DATA[2,3] selects the value on the second row 
in the third column. To access all rows of the third column, leave the rows parameter empty: 
DATA[,3] (Note that comma between rows and columns is still present!) Similarly, to select the 
second row with the values of all columns, use DATA[2,]. The range of numbers can be entered 
using a colon: DATA[1:30,] selects the values for the rows 1 to 30 and all columns. It is possible to 
use logical conditions (typically for rows); however, it is necessary to wrap the command using the 
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with function (which has two parameters, the data and the expression to be evaluated; thus, in our 
case DATA must be repeated twice). Named elements (such as columns in a data frame) can also be 
referred using the symbol $, for example DATA$Taxon. 

Note that after selecting part of the data, all factor levels from the original data are retained 
(for ID, Population and Taxon), even if there are no rows for a certain level in the new data. This 
situation can cause problems in further calculations. The droplevels function should be employed 
to remove the unused factor levels. 

To select all data for a specified taxon (note the operator = = , “equals”) 
newdata<-with(data,data[Taxon=="taxon",])     
newdata<-droplevels(newdata) 

For more taxa (any number), use the operator |  (logical OR) 
newdata<-with(data,data[Taxon=="taxon1"|Taxon=="taxon2",]) 
newdata<-droplevels(newdata) 

Removing part of the data is similar to selecting, only using negative indices. For example,  
DATA[-(1:30),] will remove the first 30 rows from the data frame and DATA[,-4] will remove 
the 4th column. To remove selected rows/columns that are not adjacent, use the function c() inside 
the subscript. For example, DATA[,-c(5,7,10)] removes the 5th, 7th and 10th columns. 

To remove all data for a specified taxon (note the operator != , “not equal”) 
newdata<-with(data,data[Taxon!="taxon",]) 
newdata<-droplevels(newdata) 

For more taxa (any number), use the operator & (logical AND) 
newdata<-with(data,data[Taxon!="taxon1" & Taxon!="taxon2",]) 
newdata<-droplevels(newdata) 

Missing data 

MorphoTools functions can handle missing data; the omission of rows with missing data is usually 
included in the functions. To remove rows with missing data manually, use na.omit followed by 
droplevels to remove unused levels of the factors. 
newdata<-na.omit(data) 
newdata<-droplevels(newdata) 

na.meansubst substitutes missing data using the average value of the respective character in the 
respective population. Generally, most of the multivariate analyses require a full data matrix. The 
preferred approach is to reduce the data set to complete rows only (i.e. perform the casewise deletion 
of missing data, as is incorporated within most of the functions) or to remove characters for which 
there are missing values (if they are concentrated in a few characters). The use of mean substitution, 
which introduces values that are not present in the original data, is justified only if (i) there are 
relatively few missing values, (ii) these missing values are scattered throughout many characters 
(each character includes only a few missing values) and (iii) removing all individuals or all characters 
with missing data would unacceptably reduce the data set. 
newdata<-na.meansubst(data) 

Exporting results 

export.res can be used to export spreadsheet-like results (of the data frame or matrix classes) for 
most of the following functions; it will create a tab-delimited text file or copy the data to a clipboard 
(but the latter operation usually fails for large data). This function is only a wrapper for the 
write.table function with some parameters set differently from the default. The function has three 
parameters: the name of the data to be exported, the name of the file to be created (“clipboard” is the 
default), and the decimal separator used (dot is the default but comma can also be used). 
export.res(data) # makes export to the clipboard 

export.res(data,"clipboard") # the same 

export.res(data,"file.txt",dec=",") # makes export to a file; comma as the decimal separator 
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Descriptive statistics 

descr.all, descr.tax and descr.pop calculate the descriptive statistics of each character in the 
whole dataset, each taxon and each population, respectively. The following statistics are included: 
number of observations, mean, standard deviation, and the percentiles 0% (minimum), 5%, 25% 
(lower quartile), 50% (median), 75% (upper quartile), 95% and 100% (maximum). The 5% and 95% 
percentiles are included because the trimmed range (without the most extreme 10% of values) is 
sometimes used in taxa descriptions, determination keys, etc. The results are formatted as data frames 
and can be exported using the export.res function. 
results1<-descr.all(data) 
results2<-descr.tax(data) 
results3<-descr.pop(data) 

Box-and-whisker plots for characters (for example, the character ML from the sample data):  
boxplot(ML~Taxon,data=cent.orig,cex.axis=1,cex.lab=1,range=1.5,col="grey", 

xlab="Taxon",ylab="ML: length of appendages (mm)", 
pars=list(whisklty=1,boxwex=0.7)) 

The command can take one line or be divided into several 
lines; the only rules are that the parameters must be 
comma-separated and each line must end with a hard stop 
(enter). The parameters are as follows:  
� The formula y~x defines the character to be plotted (y-

axis) and grouping variable (x-axis), from data. 
� cex (character expansion) – size of axis values 

(cex.axis) and axis labels (cex.lab) relative to the 
default. 

� range – length of whiskers (not more than range 
times the interquartile range); values more distant from 
the lower/upper quartiles are drawn as outliers; 
range=0 spreads the whiskers from the min to the 
max. 

� col (colour) – fill of the boxes, which can be set 
separately for each box using col=c("col", "col",…); to obtain a list of all colours use the 
command colors() or consult e.g. http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf; 
there are also a default 8 colours that can be coded by number instead of name (quotes are then 
not used): 1: black, 2: red, 3: green, 4: blue, 5: cyan, 6: magenta, 7: yellow, 8: grey. 

� xlab and ylab – axis labels; similarly, main and sub define the graph main title (above the 
graph) and subtitle (under x-axis label), here, both are suppressed by the default settings main="" 
and sub="".  

� Names of groups on the x-axis are taken from the data (levels in the grouping variable) but can 
be overridden by the parameter names=c("name","name",...). 

� Other parameters are listed in pars 
– whislty – line type for whiskers (1: solid; 2: dashed [default], 3: dotted, etc.) 
– boxwex – relative width of boxes 

Note that many other graphical parameters can be listed within pars (above, only those I consider 
important for the particular graph are used); see the help for all the parameters. 

Population means 

popul.means calculates the average value for each character in each population, with the pairwise 
deletion of missing data. The resulting data frame has populations as rows, and the first three columns 
are Population, Taxon, and N (the number of complete rows for each population). The data frame can 
be exported using the export.res function. 
newdata<-popul.means(data) 
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If there are many missing data, some population may be represented only by a few complete 
individuals. In such a case, average values can be biased, and it can be useful to omit these populations 
from further analyses in which the populations are used as the operational taxonomic units (OTUs). 
To omit populations with less than x complete observations: 
newdata<-with(data,data[!N<x,]) 
newdata<-droplevels(newdata) 

popul.otu converts the data frame with the population means so that the populations can be used 
as OTUs in the multivariate analyses. This data frame must have the same structure as that of the 
individual data; i.e., the first three columns must be ID, Population and Taxon; in this case, ID 
contains the same data as Population. Note that when using populations as OTUs they are handled 
with the same weight in all analyses (disregarding population size, within-population variation, etc.) 
newdata<-popul.otu(data) 

Distribution of characters, transformations 

charhist plot histograms and the expected normal distribution of quantitative (not binary) 
characters, either for the whole dataset or for a specified taxon. The function show graphs for the 
characters sequentially and the next graph is initiated by pressing enter or clicking the mouse. The 
purpose of the function is to examine normality of distribution, which is expected by some analyses 
(Pearson correlation coefficients, PCA, discriminant analyses). More precisely, within-group 
distribution should be normal, and thus one-taxon histograms are more relevant. 
charhist(data) # the whole dataset (all taxa); default 

charhist(data,taxon="taxon") # the same specified taxon 

charhist(data,"taxon") # the same, shorter version 

If a normality test of some character is needed, the Shapiro-Wilk test may be performed with the 
following R base function: 
shapiro.test(data$character) 

For a selected taxon only: 
x<-with(data,data[Taxon=="taxon"]) 
shapiro.test(x$character) 

Several other normality tests are available in the package nortest (Gross & Ligges 2012). 

The characters that deviate most from the normal distribution can be transformed. If both individuals 
and populations are used as OTUs, both data sets should be transformed in the same way. 
Logarithmic, both natural (log) and common (log10), and square root (sqrt) transformations are 
the most often used. If there are zero values in the data, it is necessary to add some constant (for 
common logarithmic transformation, a value of 1 is often used, as this value becomes 0 after 
transformation). In case of frequency (percentage) data (such as portion of certain type of trichomes 
among all trichomes), sometimes no transformation is needed (if the span of values is not too big and 
the values are generally between 30 and 70%) or simple arcsin (angular) transformation is often 
sufficient. Examples are as follows: 
data$character<-sqrt(data$character) 
data$character<-log(data$character) 
data$character<-log10(data$character+1) 
data$character<-log10(10*data$character+1) 
data$character<-asin(sqrt(data$character/100)) 

data$character<-asin(sqrt(data$character)) # as above for frequency from 0 to 1, not % 

Using the same character names on the left side as on the right side, the function will overwrite 
the original values. Using different names, the function creates a new column and retains the original 
values in the data. I prefer the former option. In this case, it is useful to rename the transformed 
characters. First, use the colnames function to see the (ordered) column names. Alternatively, you 
can find the index of the requested character using which. Then, rename the columns using subscripts 
to colnames with the position (index) of each character. For example, renaming Char2 and Char5 
from data: 
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colnames(data) 
[1] "ID" "Population" "Taxon" "Char1" "Char2" "Char3" "Char4" 
[8] "Char5" "Char6" 

or 
which(colnames(data)=="Char2") 
[1] 5 

which(colnames(data)=="Char5") 
[1] 8 

then 
colnames(data)[c(5,8)] <- c("logChar2","logChar5") 

The transformed data can be exported using the export.res function. 

Correlations of characters 

cormat calculates the matrix of the correlation coefficients of the characters, Pearson’s (default) or 
Spearman’s. The results are formatted as data frames to allow export with the export.res function. 
Highly correlated characters (r > |0.95|) should not be used in principal component analysis and 
especially in discriminant analysis. Significance tests are not performed, as they are usually 
unnecessary for morphometric analysis. 
results<-cormat(data) # Pearson’s correlation coefficients 

results<-cormat(data,method="pearson") # the same 

results<-cormat(data,method="spearman")  # Spearman’s correlation coefficients 

If significance tests are needed, they can be computed using the cor.test function from the R base 
installation (which tests pairs of characters) or the corr.test function from the psych package 
(Rewelle 2013) (matrix of significance tests; see the function’s help for details and use). 
cor.test(data$char1,data$char2,method="pearson") 
cor.test(data$char1,data$char2,method="spearman") 
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Cluster analysis 

clust performs agglomerative hierarchical clustering based on Euclidean distances. Typically, 
populations are used as OTUs. The function includes (i) standardisation of the characters to a zero 
mean and a unit standard deviation using the scale function, (ii) calculation of the distance matrix 
using the dist function and (iii) clustering using the function hclust. The clustering method is 
specified with the method parameter, one of: average (the default; can be also coded as UPGMA), 
complete or ward. For the Ward’s method, there are two versions in R, the default (ward.D) is 
used. Note that there are other methods available but rarely used in morphometric analyses; see the 
help to the hclust function for details. Similarly, other than Euclidean distances might be 
implemented by a simple modification of the code (see the dist function). 
results<-clust(data) # UPGMA (default) 

results<-clust(data,method="average") # the same, "UPGMA" can also be used 

results<-clust(data,method="ward")  # Ward’s method 

results<-clust(data,method="complete") # complete linkage 

Dendrograms are produced using plot (note that this is a generic R function, with settings depending 
on the class of the plotted object). For the populations clustered using Ward’s method: 
plot(results,cex=0.6,cex.axis=0.8,cex.lab=0.8,frame.plot=T,hang=-0.1, 

main="",sub="",xlab="",ylab="distance") 

Important parameters: 
� data – the first parameter (unlike 

other function, it is not called 
data=data). 

� cex, cex.axis, cex.lab – relative 
size of OTU names, y-axis values and 
axis labels. 

� frame.plot – logical (T/F or 
TRUE/FALSE), sets if the frame along 
the plot is drawn. 

� hang – distance (fraction of the plot 
height) of the label from the last node 
of the dendrogram, i.e., length of the 
terminal branches; if negative (any value), the labels hang down from 0. 

� main, sub, xlab, ylab – main title, subtitle, x-axis label, and y-axis label, respectively; 
"" indicates no label. 

Rectangles highlighting certain clusters can be added using rect.hclust: 
rect.hclust(results,h=12,which=c(1,2,3),border=c("red","green","blue")) 

� data – the same as in the function plot. 
� h – linkage distance (in units of the y-

axis) to cut the dendrogram; branches 
crossing this value define clusters. 

� which – number of clusters to be drawn 
(from left to right); for example, there 
may be five clusters at h=12, but we want 
to draw only the first three. For one 
cluster, directly enter the number (e.g., 
which=2); for more clusters, wrap the 
numbers in the function c(), as above. 

� border – colour of the rectangle; either 
single a value common to all clusters 
selected by which (e.g., border = 

"green") or a separate colour for each cluster. 
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Additional content may be created using functions such as text or arrows. In the example figure, 
certain (“misclassified”) populations are highlighted by the symbol * using text: 
text(x=c(15,17,21,31,32),y=-4.3,"*",cex=1.25,col="black",adj=0.5) 

� x and y coordinates of the text; might be single value or vectors when more text values is to be 
displayed; if the vectors differ in length, the shorter is recycled from the beginning; here, the y-
coordinate is the same in all cases and the x-coordinates are positions of the populations to be 
highlighted 

� the next parameter is the text (quoted) to be displayed; might also be a character vector, 
c("text1","text2",…) or as.character(seq(1,5,0.5)) [numbers from 1 to 5 by 0.5] 

� cex and col have their usual meaning 
� adj is the horizontal adjustement of the text to the given coordinates (0: left adjusted; 0.5: centred; 

1: right adjusted); note that there are other possibilities but are less suitable in this particular case 
� many other parameters are available describing colour or font of the text, see the help to text 

The use of plot, rect. hclust or text functions requires some experimentation. After finding 
good parameters for plot, start with rectangles specifying only h (i.e., draw all clusters). Select the 
rectangles to draw using which, set border, and rerun both functions. The rect.hlust function 
with different parameters can be used several times for one dendrogram. Similarly, text can be 
added in one or several calls. The example figure was created using this code (for comparison with 
the previous graph, frame.plot=F is used): 
results<-clust(data,method="ward") 
par(mar=c(2,4.5,1,1)) 
plot(results,cex=0.6,cex.axis=0.8,cex.lab=0.8,frame.plot=F,hang=-0.1, 

main="",sub="",xlab="",ylab="distance") 
rect.hclust(results,h=12,which=c(1,2,3), 

border=c("red","green","darkviolet")) 
rect.hclust(results,h=14,which=4,border="blue") 
text(x=c(15,17,21,31,32),y=-4.2,"*",cex=1,adj=0.5) 

The red cluster is Centaurea stenolepis, the green is C. phrygia s.str., the violet is the hybrid C. 

pseudophrygia × C. stenolepis and the blue is C. pseudophrygia. The “incorrectly” clustered 
populations are highlighted (BABL and LES were originally classified as C. pseudophrygia, PROS 
as a hybrid and BUK and NSED as C. phrygia s.str.). 
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Principal component analysis (PCA) 

pca.calc performs principal component analysis using the R base prcomp function after omitting 
the rows with missing data. Standardisation of characters to have a zero mean and a unit standard 
deviation is employed. Note that there are also other PCA functions in R, such as princomp and 
dudi.pca (the ade4 package, Dray & Dufour 2007). 
results<-pca.calc(data) 

Variation explained by individual axes: 
summary(results) 

Note that the function prcomp stores only the square roots of eigenvalues (i.e., standard deviations 
of the principal components). To obtain the actual eigenvalues, use the pca.eigen function: 
pca.eigen(results) 

You can also plot the eigenvalues as a scree plot (the second command draws points connected with 
a line instead of bars): 
plot(results) 
plot(results,type="lines") 

The correlation of the characters and ordination axes, i.e., character loadings, can be extracted using 
pca.cor with two parameters, PCA results and number of axes to save (n). For n, the default value 
is 4, but any value can be specified. 
correlations<-pca.cor(results) # extracts the first four principal components 
correlations<-pca.cor(results,n) # extracts the specified n of principal components 

pca.scores computes the ordination scores of cases (objects, OTUs). Note that this function has 
three arguments: results (PCA definition), data, and number of axes to extract (n; default is four). The 
data may also contain additional (passive) samples that were not present in the original analysis. The 
function adds the first three columns (ID, Population, Taxon) from the data to the final data frame, 
which is useful for plotting taxa/populations with 
different symbols or colours.  
scores<-pca.scores(results,data)  
scores<-pca.scores(results,data,n) 

Both coefficients of characters and case scores can 
be exported using export.res function. 

plot.scores produces a scatterplot of the 
ordination scores, point.labels can add label to 
the data points, as described below. The function 
allows many graphical parameters of plot, with 
some additional features. Reference lines are added 
at 0 at both axes. Taxa can be marked with different 
symbols and/or colours. There are 21 different 
symbols available in R and 5 additional (21–25) 
symbols whose background colours can be set 
differently from their foreground colours; letters 
and many other characters can also be used as 
plotting symbols. Colours are coded by name (type 
colors() to see the list); 8 default colours may 
also be coded by numbers (1: black, 2: red, 3: green, 
4: blue, 5: cyan, 6: magenta, 7: yellow, 8: grey). 
Symbol types (the pch parameter) and colours (the 
col parameter) can be generated automatically 
from levels in the variable Taxon using the function 
as.numeric(scores$Taxon), but this method 
has one major drawback. The as.numeric  
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function will code the first level found in the specified variable as 1, the second as 2, etc., and these 
numbers will then be used to code the symbols/colours without a possibility of change. To use 
different symbols/colours, check levels of the Taxon variable and define vectors of values of pch 
and/or col for each level. Alternatively, these parameters can be defined directly in the 
plot.scores function call. 
levels(scores$Taxon)   # four levels present in the sample data; levels ordered alphabetically 
[1] "hybr" "ph"   "ps"   "st" 
taxon.symb<-c(23,17,1,8) 
taxon.col<-c("black","red","blue","darkgreen") 
plot.scores(scores,axes=c(1,3),pch=17,col=taxon.col,labels=T,legend=F) 

The function plot.scores is then called, with the following parameters: 
� scores, a dataframe with ordination scores. 
� axes defines ordination axes to plot; the form is axes=c(x,y), where x and y are number of 

the horizontal and vertical axis, c(1,2) is the default. 
� pch and col define point symbol and colours, respectively. If omitted, default values are used 

[solid circle, pch=16, and colour created using as.numeric(scores$Taxon)]. Single value 
can be specified (the same for all taxa) or a vector of the same length as is the number of taxa can 
be provided; the two parameters are independent and all combinations of definitions can be used. 

� xlab and ylab define labels of the x and y axis; if omitted, default labels “axis 1” and “axis 2”, 
respectively, are displayed. 

� labels (logical, TRUE/FALSE; the latter is the default) defines whether the sample names taken 
from the scores$ID column are displayed. This is intended for a quick orientation in the results, 
for presentations / publications more detailed work with text labels is needed, as described below. 

� legend (logical, TRUE/FALSE; the latter is the default) defines if legend is displayed, if so, the 
additional parameter legend.pos defines the legend position. The legend is generated from 
Taxon levels using pch and col specified in the function call. The legend position can be defined 
either as the position of the legend upper left corner as c(x,y) or by a single word defining the 
legend’s alignment to the plot, possible values are center (the centre of the plot, not useful) 
left, right, top, bottom or any combination of them; legend.pos="topright" is the 
default. However, note that the legend in this form is intended mainly for quick orientation in the 
plot in cases in which col or pch are generated automatically; for finer control it is possible to 
set legend=FALSE and create legend directly using the legend function, as described below. 

Numerous other graphical parameters of the generic plot function can also be specified. The most 
important include: 
� bg sets the background colour for the symbols 21–25. 
� xlim,ylim define the minimum and maximum for the x- and-y axis, respectively, in the form 

c(min,max). Extending the axes can be useful to create free space for a legend or point labels. 
� main and sub have their usual meaning (the main title and the subtitle below the x axis). 
� cex, cex.axis, cex.lab, cex.main and cex.sub define the relative sizes of symbols, axis 

values, axis labels, main title and subtitle, respectively (last two are not used in an example 
above). 

plot.scores(scores)   # all parameters default 

taxon.col<- c("black","red","blue","darkgreen") 
plot.scores(scores,axes=c(1,3),pch=17,col=taxon.col,labels=T) # col from a vector 
plot.scores(scores,axes=c(2,3),labels=T,pch=c(1,3,8,21),cex=0.8, 

col=c("black","red","blue","darkgreen"),bg="grey") # both pch and col defined here 

Text descriptions of data points (taken from the ID column of the dataframe with ordination scores) 
may be added using the function point.labels. This is only a wrapper for the text function that 
allows convenient work with only selected labels; i.e., for different groups of labels, different 
parameters (position, colour, size, etc.) can be defined.  
point.labels(scores,axes=c(1,2),cex=0.8,col="red",pos=4,offset=0.4) 
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The function has four parameters: 
� scores and axes are the same as in plot.scores (axes must be specified again here to get 

the coordinates of the labeled points). 
� names defines the labels to work with; should be a character vector or c(label1,label2,…); 

if omitted, all labels are influenced. Alternatively, the labels can be selected using indices (row 
numbers) to scores.  

� excl (logical) defines whether only specified labels are processed (FALSE; the default) or 
whether the specified labels are excluded (TRUE). 

Numerous graphical parameters of the text function can be used 
� col and cex have their usual meaning 
� font defines the style of the text (1: plain, 2: bold, 3: italics, 4: bold italics) 
� pos is the position of the label relative to its coordinates (1: below, 2: to the left, 3: above, 4: to 

the right; last is the default). 
� offset – the offset (in fraction of character width) of the label from the position specified by 

pos; the default is 0.5. 
� adj provides an alternative way of adjusting the label position; note that it is overridden with pos 

and thus pos=NULL must be specified. The parameter adj (single value for x axis or c(x,y) for 
both axes) have the values from 0 (left/bottom) to 1 (right/top); 0.5 means centred and values 
outside the interval <0 , 1> will usually also work to make the label more distant from the point. 

point.labels(scores,axes=c(1,3),cex=0.5,col="blue") # 1st and 3rd axis, all labels 

point.labels(scores,names=c("POP1","POP2"),excl=T) # all but two named populations 

point.labels(scores,names=c("POP1","POP2"),pos=1) # the two populations, below points 

point.labels(scores[scores$ID==c(1,2,5),], pos=2) # selecting populations using indices 

The whole code used to generate the sample figure for populations above (to demonstrate various 
symbol types, colours and work with text labels): 
results<-pca.calc(data) 
scores<-pca.scores(results,data) 
plot.scores(scores,xlab="PC1 (33.4%)",ylab="PC2 (20.9%)",pch=c(23,17,1,8), 

col=c("black","red","blue","darkgreen"),bg="grey",cex=1.25,xlim=c(-4,6.7), 
legend=F) 

point.labels(scores, 
names=c("PROS","SOK","KASH","BOL","KRO","DUB","MIL","CERM","KOZH","KOT"), 
excl=T,cex=0.75) 

point.labels(scores,names=c("PROS","SOK","KASH","BOL","CERM"),pos=2,cex=0.75) 
point.labels(scores,names=c("KRO","MIL","KOZH"),pos=3,offset=0.7,cex=0.75) 
point.labels(scores,names=c("DUB","KOT"),pos=1,offset=0.7,cex=0.75) 

plot.characters draws character loadings as 
arrows. The function uses the base functions plot 
and arrows and allows most of their graphical 
parameters. The character names can be added using 
the point.labels function, as described above.  
plot.characters(loadings,axes=c(1,3), 

col="black",length=0.05,labels=T) 

The most important parameters include:  
� loadings, a dataframe with the character 

loadings (the results of the pca.cor function). 
� axes=c(x,y)defines ordination axes to plot; 

c(1,2) is the default. 
� col is colour of the arrows, red is the default 
� lty defines the arrow line style (1: solid (default), 

2: dashed, 3: dotted, 4: dotdash, etc. 
� length and angle defines the arrow head; the 

default values are 0.1 and 20, respectively 
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� xlim, ylim (c(-1,1) is the default), xlab, ylab, cex, etc. have their usual meaning 
� labels (logical, TRUE/FALSE; the former is the default) defines whether the sample names 

taken from the loadings$Character column are displayed. This is intended for a quick 
orientation in the results, for presentation quality figures more detailed work with text labels using 
the point.labels function is needed, as described below. 

The code used to produce the sample figure is: 
loadings<-pca.cor(results) 

plot.characters(loadings,length=0.05,xlab="PC1 (33.4%)",ylab="PC2 (20.9%)", 
labels=F) 

point.labels(loadings,names=c("LW","logAP","IW","AW","logSF","logSFT"), 
excl=T,cex=0.75) 

point.labels(loadings,names=c("LW","logAP","IW","AW"),cex=0.75,pos=2, 
offset=0.2) 

point.labels(loadings,names=c("logSFT"),cex=0.75,pos=3) 
point.labels(loadings,names=c("logSF"),cex=0.75,pos=1) 

plot.biplot is the function to produce a biplot combing sample scores and character loadings. The 
function combines the plot.scores and plot.characters functions with the parameters: 
� The first two parameters are scores and loadings 
� Since the axes ranges are usually different 

between sample scores and characters (such as 
<-4,6.5> and <-1,1> for the x-axis, 
respectively, in the population sample data), it 
is usually necessary to rescale one of them. The 
scaling factor is defined by the scale.fact 
parameter: 0 – no change, > 0 sample scores 
are divided by the scaling factor, the scaling of 
axes for characters is retained; <0 character 
loadings are divided by the (absolute value) of 
the scaling factor, the scaling of axes for 
sample scores is retained. 

� The other parameters are the same as in the 
plot.scores and plot.characters 

functions, except for the colour parameter that 
has to be specified separately as col.point 
and col.arrows (red as the default); labels and legend are set FALSE as the default. 

� Labels can be added both to point and character arrows separately using the point.labels 
function, as described above. 

plot.biplot(scores,loadings,pch=c(16,23,24,2),col.points="black",bg="grey50", 
scale.fact=4,cex=1.5,xlim=c(-1,1.7),ylim=c(-1.5,1),xlab="PC1 (33.4%)", 
ylab="PC2 (20.9%)") 

point.labels(loadings, 
names=c("LW","logAP","IW","AW","logSF","logSFT","logMW"),excl=T,cex=0.75) 

point.labels(loadings,names=c("logAP","IW","AW","logMW"),cex=0.75,pos=2, 
offset=0.2) 

point.labels(loadings,names=c("LW","logSFT"),cex=0.75,pos=3) 
point.labels(loadings,names=c("logSF"),cex=0.75,pos=1) 

However, if there are many characters and data points, they will most likely overlap. I therefore 
consider two separate scatterplots more informative than a biplot. Note also that there are other 
function to produce biplots available in R, such as biplot and biplot.princomp. 
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Here is a PCA of individuals, configured to highlight the position of the hybrids in a greyscale-only 
figure. Compared to the scatterplot of populations, individual labels are omitted (too many would be 
present) and creating legend by the separate command is demonstrated:  
results<-pca.calc(data) 

scores<-pca.scores(results,data) 

plot.scores(scores,pch=c(16,2,21,3),col=c("black",rep("grey30",3)),bg="grey", 
cex=1.25,xlim=c(-8.5,4.3),ylim=c(-4.5,6),xlab="PC1 (22.3%)", 
ylab="PC2 (13.8%)",legend=F) 

legend(-8.5,6.0,levels(scores$Taxon),pch=c(16,2,21,3), 
col=c("black",rep("grey30",3)),bty="o",pt.bg="grey",cex=0.9,pt.cex=1,ncol=2) 

The parameters of legend: 
� The first two arguments indicate the 

position (x and y) of the upper left corner of 
the legend. Note that it is possible to create 
free space for the legend by properly setting 
the xlim and ylim parameters of the 
plot.scores function. Alternatively, 
legend position can be defined by a single 
word, as desribed above (top, bottom, right, 
left, and their combinations). 

� The third argument defines the text labels 
displayed in the legend. Here, the labels are 
taken from the variable Taxon using the 
levels function. Alternatively, arbitrary 
text labels can be defined using the c() 
function: 
c("text1","text2",...) 

� pch – symbols used in the legend (only be careful to use the correct order respective to the labels). 
� col – colour of symbols. Note that I used the function rep here, which has two arguments: what 

to repeat and how many times: rep("grey30",3) is equivalent to 
"grey30","grey30","grey30". The colours can also be generated automatically in the same 
way as colours of the data points, i.e. the first level (hybr) will have colour 1 (“black”), the second 
(“ph”) the colour 2 (red), etc.; the command must extract levels (taxa) from the Taxon column 
and convert them from a character vector (does not have levels defined) to a factor: 
col=as.factor(levels(scores$Taxon)) 

� pt.bg is equivalent to bg in the plot function, i.e., the background colour of symbols 21–25. 
Note that the parameter bg is also present in the legend function, but it defines the background 
of the whole legend. 

� bty defines the frame around the legend ("o" for rectangle or "n" for none) 
� cex defines the relative size of the legend text, while pt.cex defines the size for legend symbols; 

if pt.cex is not specified (default), then pt.cex = cex. 
� ncol defines the number of columns in the legend. The default is ncol=1, i.e., a vertical legend. 

ncol=k, where k is the number of levels, would produce a horizontal legend. 
� Note that many other graphical parameters are present for legend that define legend text 

alignment, spacing or colour, legend frame type and colour, etc., but the default settings usually 
work well; see the help for details. 
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An interesting possibility for showing the overlap of groups is the “spider” diagram of the function 
s.class from the ade4 package. Note that this package also includes other graphing functions (such 
as s.arrow for characters and scatter for biplots), as well as its own PCA function, dudi.pca. 
library(ade4) 
par(oma=c(2,2,1,1)) 
s.class(scores,scores$Taxon,xax=4,yax=5,pch=16, 

col=c("black","blue","green","red"),label=levels(scores$Taxon),cstar=1, 
axesell=F,addaxes=T,grid=F,clabel=0.8,cpoint=0.8) 

axis(1,pos=-4.7,cex.axis=1,lwd=0,at=c(-8,0,5),labels=c("-8.0","0.0","5.0")) 
axis(2,pos=-9.5,cex.axis=1,lwd=0,at=c(-4,0,5),labels=c("-4.0","0.0","5.0")) 

Parameters of s.class: 
� The first arguments the data to plot, and the 

second the variable that define the classes to 
plot. 

� xax and yax are the numbers of columns in 
the data with the x- and y-coordinates, 
respectively 

� pch and col have their usual meaning and 
must be either a single number (the same for 
all classes) or values for each class enclosed 
in the c() function. 

� label defines class labels, using either an 
expression (such as the function levels 
here) or a list of values for each class, 
similarly to col and pch. 

� cstar defines the length of star “rays” from the interval <0,1>, axesell=F suppress inertia 
ellipses, addaxes=T draws axes, and grid=F suppress gridlines. 

� clabel and cpoint defines the sizes of class labels and points, respectively (equivalents of the 
cex parameters of the plot function). 

The function s.class does not print axis values. These values can be added using the generic 
function axis, although much experimentation is needed depending on the graph window size and 
shape. First, it is necessary to set the margins using par(oma=...)) and then to use the axis 
function: 
� the first argument is axis to be drawn (1: horizontal, 2: vertical) 
� pos is the axis position on the perpendicular axis 
� cex.axis sets the size of the axis labels as usual. 
� lwd=0 suppresses the axis to be draw (lwd is line width) so as not to interfere with the axes drawn 

by s.class 
� tickmarks would be displayed if lwd were not zero, their length is controlled by the tcl 

parameter. However, it is difficult to find a combination of axis position, labels and tickmark 
length that creates a good figure. Therefore, tickmarks are omitted here. 
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A 3D scatterplot can be produced using the scatterplot3d function from the scatterplot3d 
package (Ligges & Mächler 2003). Similarly to the process for 2D plotting, it is first necessary to 
define symbol types and colours. If they should be different for each taxon, it is necessary to extract 
Taxon column from the dataframe, replace the values with colours/symbols and then use the modified 
vector in a function call with the parameters pch or col. Note that for 2D plots, this operation is 
included within the function plot.scores. 
levels(scores$Taxon) # prints the levels of the Taxon column on a screen 

taxa<-levels(scores$Taxon) # extracts the levels of the Taxon column to a vector 

taxa.colours<-c("black","blue","red","green") # defines the colour for each taxon 

taxa.ind<-as.character(scores$Taxon) # extracts the Taxon column to a character vector 

# the following two lines makes the replacement (might be one line, then omit the brackets {} ) 
for (i in 1:length(taxa)) { 

taxa.ind<-gsub((taxa)[i],taxa.colours[i],indiv.taxon)} 
# if numbers are used as codes (such as for symbols), one additional line is needed 
taxa.ind<-as.numeric(taxa.ind) 
# 3D plot 
library(scatterplot3d) 
with(scores,scatterplot3d(PC1,PC2,PC3,color=taxa.ind,pch=16,type="h", 

lty.hplot=1,grid=T,col.grid="grey",box=F,angle=60,scale.y=0.9,cex.symbols=1, 
cex.axis=0.9,cex.lab=0.9,mar=c(4,4,0,3),y.margin.add=0.3,xlab="PC1 (22.3%)", 
ylab="PC2 (13.8%)",zlab="PC3 (9.3%)")) 

First, the scatterplot3d package is loaded using the library command. The scatterplot3d 
function is then run; for simpler writing of the column names, it can be wrapped in the with function. 
This function has two parameters: an object to work with and the command to run. When not using 
with, it would be necessary to use the full reference to the columns with ordination scores, such as 
scores$PC1 instead of PC1, etc. 

The parameters of the scatterplot3d function are as follow: 
� The first three parameters represent the x-,y- and z-coordinates of the points, respectively. 
� color has the same meaning as col in the other plotting functions. 
� bg is also similar to its use in the plot function (symbols 21–25; not used here). 
� pch has its usual meaning; note that in the present figure, only one character is used for all taxa. 
� type is similar to the same parameter in 

the plot function; the relevant values 
are "p" for points only, "h" for points 
with vertical lines and "n" for nothing. 

� grid is logical (TRUE/FALSE) – 
whether gridlines are drawn the on x-y 
plane. 

� col.grid sets the colour of the 
gridlines if grid=T. 

� box (logical) defines whether only the 
axes or all edges of a box are drawn 
around the graph. 

� angle and scale.y control the “rotation” of the graph; the former is the angle between the x- 
and y-axis and the latter is the relative length of the y-axis. 

� mar defines the width of the margins in a similar way as par(mar=...); note that setting 
margins using par is not effective in the scatterplot3d package. 

� y.margin.add adds extra space between the y-axis values and the axis label to avoid overlap. 
� cex., xlab, ylab, zlab, sub, and main all have their usual meanings. 
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Canonical discriminant analysis 
(also know as linear discriminant analysis or canonical variate analysis; CDA or LDA or CVA) 

Canonical discriminant analysis can be performed in several R packages. Here, the use of the vegan 
package (Oksanen et al. 2013) is demonstrated. The major advantage of vegan is that it uses 
permutation significance tests, which overcome the need for the normal distribution of characters. 
Standardisation of data is not necessary in discriminant analyses and thus the original values of 
characters are used. 

discr.calc creates an object, discr.data, that contains two data frames (values of the characters 
and classification of objects into taxa) and passes them to the cca function from the vegan package, 
which performs the discriminant analysis. 
results<-discr.calc(data) 

discr.sum summarises the results and returns the eigenvalues of the canonical axes, the percentage 
of explained variation, the canonical correlation coefficients of the individual axes, and the 
permutation tests of the whole model and of the individual axes (using the functions summary.cca, 
eigenvals, spenvcor and anova.cca). Note that the axes are called CCA1, CCA2, etc. The 
eigenvalues in vegan (similarly as in Canoco) are equal to the squares of canonical correlation 
coefficients and are different from the eigenvalues printed by other software packages (see ter Braak 
& Šmilauer 2012 for details); the recalculation is returned as the first item by the discr.sum 
function. The number of permutations can be set using the parameter perm; the default value is 500. 
The number of permutations determines the lowest achievable significance level (1/n); setting more 
permutations allows for more precise tests, but the permutation procedure is rather slow in R. 
discr.sum(results) # using default number of permutations (500) 
discr.sum(results,perm=1000) # user-specified number of permutations 

discr.coef returns the coefficients of discriminant function (regression coefficients) for individual 
characters (based on the function coef). These coefficients refer to centred but unstandardised 
characters [for characters A, B,.., the equation is (A – mean (A)) * coef A +  (B – mean (B)) * coef 
B + …]. Because character means are needed to compute the object scores, they are returned as the 
first column of the resulting data frame. However, the calculation of canonical scores (even for new 
objects) is more easily achieved using the discr.scores function (see below). The results can be 
exported using the export.res function. 
coefficients<-discr.coef(results) 

discr.taxa returns the positions (centroids) of taxa (using the function scores); the results can 
be exported using the export.res function. 
dscores<-discr.taxa(results) # not using scores here as it is a function in vegan 

discr.scores computes the ordination scores of cases (OTUs). The function has two arguments, 
results (discriminant analysis definition) and new data. The function uses the generic function 
predict and can also calculate scores for (passive) samples that were not present in the original 
ordination. This approach is advantageous for testing the positions of “atypical” populations (e.g., 
putative hybrids) or for assessing the taxonomic positions of selected individuals (e.g., type herbarium 
specimens). The function adds the first three columns (ID, Population and Taxon) from the data to 
the final data frame, which is useful for plotting taxa/populations using different symbols or colours. 
The resulting data frame can be exported using the export.res function. 
dscores<-discr.scores(results,data) 

discr.bip returns the “biplot scores”, i.e., the contribution of characters to individual axes (also 
called factor structure or total structure coefficients by other software packages). Compared to usual 
biplot scores (as returned by the summary.cca function), these values are standardised by within 
group variance instead of by total variance to better reflect the relative importance of the characters 
(see Lepš & Šmilauer 2003 for details). The resulting data frame can be exported using the 
export.res function. 
dscores<-discr.bip(results) 
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discr.test performs significance tests of individual characters. Two types of tests are computed. 
First, the marginal effects (i.e., when a character is alone in the model) are computed using the generic 
function add1. Second, the unique contributions of the characters (i.e., the addition of each character 
into the model with all other characters) are tested using the anova.cca function with the setting 
by="margin"; note that these contributions are called marginal effects in vegan terminology. The 
latter analogous (but not identical) to the standardised coefficients of the discriminant function 
computed by several other software packages. Similarly to the discr.sum function, the number of 
permutations (500 is default) should be chosen with respect to the desired significance level. Although 
the algorithm is rather slow, calculation should not take more than a few minutes, even with 1000 
permutations (unless the dataset is extremely large). As many tests (one for each character) are 
performed, some correction of significance levels should be considered. The results of the 
discr.test function consist of a list containing two data frames. These data frames can be exported 
separately using the export.res function by adding a subscript to the list (note the double brackets). 
They can also be exported together, but the names of the columns are changed during the export. 
tests<-discr.test(results) 

tests<-discr.test(results,perm=1000) # user-specified number of permutations 

export.res(tests[[1]]) # marginal effects 

export.res(tests[[2]]) # unique contributions 

Forward selection of characters is performed by the discr.step function, which is based on the 
ordistep function. Two models can be specified by the parameter dir: dir="forward" performs 
the addition of characters starting with a null model, while with dir="both", the function alternates 
the addition and removal of one character and stops when no significant change is possible in either 
direction. Direction (default is forward) and number of permutations (default is perm = 500) can 
be specified, and the threshold significance level can also be set (default is p=0.05). The inclusion 
of a character into/removal from the model is based on permutation tests; the function also print AIC 
values (similarly to other stepwise models in R), but these values are not meaningful for cca 
ordination (see the R help for details). 
 Note that the discr.step function is intended to print the results on a screen. The results of 
stepwise selection using the discr.step function may be assigned as a new discriminant analysis, 
however, the functions for characters (discr.coef, discr.bip) will not work properly, as they 
look for (the original set of) characters stored in discr.data. Therefore, a new data set with only 
selected characters should be prepared and the discr.calc function then used to produce a new 
discr.data list. 
discr.step(results) # default settings 

discr.step(results,perm=200) # reducing the number of permutations 
discr.step(results,perm=1000,dir="both",p=0.05/22) 
 # all parameters set manually, Bonferroni correction of 

significance levels used (22 characters present) 

newresults<-discr.step(results) # saves the results as a new discriminant analysis 

Graphics with three and more groups can be produced in a similar way as in PCA, using the functions 
plot.scores, plot.characters, plot.biplot and plot.labels; see the examples below. 
For two groups, there is only one canonical axis and the ordination scores are better presented as 
histograms (sample scores) / bar plots (characters). 
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Discriminant analysis of the three species, hybrids excluded: 
# individuals 
levels(dscores$Taxon)   # ph  ps  st 
plot.scores(dscores,pch=c(2,21,3),col="black",bg="grey50", 

xlab="discrim. axis 1",ylab="discrim. axis 2", legend=F) 
legend(3.6,4.4,c("ph","ps","st"),pch=c(2,21,3),col="black",pt.bg="grey50", 

bty="o",cex=1,pt.cex=1,ncol=1) 
# characters 
plot.characters(characters,xlab="discrim. axis 1",ylab="discrim. axis 2", 

xlim=c(-0.8,0.7),ylim=c(-0.6,0.6)) 
point.labels(characters, 

names=c("logSF","CG","ALW","ST","IS","SN","MLW","AL"),excl=T, 
cex=0.8,offset=0.4) 

point.labels(characters,names=c("logSF"),pos=3,cex=0.8,offset=0.4) 
point.labels(characters,names=c("ALW","CG","ST","IS","SN","MLW","AL"), 

pos=2,cex=0.8,offset=0.3) 

A scatterplot of individuals, with a focus on putative hybrids treated as passive samples: 
plot.scores(dscores,pch=c(16,2,21,3),col=c("black",rep("grey50",3)),bg="grey", 

xlab="discrim. axis 1",ylab="discrim. axis 2",xlim=c(-5,6),ylim=c(-6,5), 
legend=F) 

legend(2.9,5,c("ph","ps","st","hybr"),pch=c(2,21,3,16), 
col=c(rep("grey50",3),"black"),pt.bg="grey",bty="o",cex=0.9,pt.cex=1,ncol=2)  
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If there are only two groups (for example, only C. phrygia and C. pseudophrygia from the sample 
data are analysed), there is only one canonical axis, and canonical scores are plotted as a histogram. 
One possibility is to a separate histogram for each group, both histogram having the same axes; this 
is done by the function discr.2hist: 
discr.2hist(dscores,breaks=seq(-5,5,0.5),labels=seq(-5,5,1),ylim=c(0,40), 

col=c("grey30","white"),tcl=-0.3,tcl.min=0) 

The parameters of the function are: 
� scores – a dataframe with the 

ordination scores. The function 
internally computes means for both 
groups to draw the group with lower 
values first; the group codes (from the 
taxon column) are displayed in the x-
axis label. 

� breaks defines the range of the x-
axis (to cover all values in the data) 
and the step; here it is generated using 
the function seq as 
seq(min,max,step). If omitted, 
default values generated by the hist function are used. 

� labels defines the labels on the x-axis. When omitted, all values defined with breaks are 
labelled. In the example above, the labels are generated so that only every second position is 
labelled. 

� col and border define colours of the fill and the outline of the bars, respectively. When omitted, 
default settings (from par) are used (usually used for border, where black is the default). When 
single value is supplied, it will be used for both histograms. When there are two values 
c(value1,value2), they will be used for the left and the right histogram, respectively. 

� tcl defines size of the labelled (main) tickmarks, the negative values cause the tickmarks to be 
oriented outside of the plot (down and left on the x- and y-axis, respectively); tcl=-0.5 is the 
default. 

� tcl.min defines the size of unlabelled (minor) tickmarks in the similar way; tcl.min=0 can be 
used to suppress them at all. 

� ylim defines the range of y axis, as c(0,max). When omitted, it is determined by the function 
internally as the maximum count within an interval rounded up to the nearest ten. 

� other usual graphical parameters can be specified, such as cex.axis and cex.labels. The 
y-axis limit (ylim) is usually different for both groups (depending on the number of observations 
available), it is therefore useful to define it manually and re-run the function; it will then be 
common for both groups. 

Both histograms can be combined into one using semi-transparent colours to show the groups overlap; 
see the next page. 
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A histogram with semi-transparent colours allows for both groups to be combined into one figure 
using the discr.hist function; the semi-transparent colour showing the overlaps. However, note 
that in this case, the graph cannot be exported to a metafile (does not support semi-transparent 
colours). Here, the script defines export to .png (the first and the last line); the plot margins (and many 
other par settings) should be defined after the png call, because many general par settings are not 
effective for the PNG graphical device (similar also tiff,  bmp or jpg, as described in the 
introduction). 
png("file.png",width=16,height=14,units="cm",res=600) 
par(mar=c(4.5,4.5,1,1)) # reducing the upper and right margins 
discr.hist(dscores,breaks=seq(-5,5,0.5),labels=seq(-5,5,1),tcl.min=0.25, 

col=c("grey30","white",0.5),legend=F) 
legend("topright",levels(dscores$Taxon),pch=22,pt.bg=c("grey30","white"), 

pt.cex=2,bty="o",ncol=2) 
dev.off()  

Many parameters are similar to the previous 
function discr.2hist: 

� the first parameters is the dataframe with the 
ordination scores.  

� breaks, labels, tcl, tcl.min and ylim 
are similar as in the two histogram function. 

� col has three values that defines colours of the 
first and second histogram and opacity for the 
second. The order of taxa is respective to 
levels(scores$Taxon), i.e. to an 
alphabetical order of the taxon codes. Opacity 
has the range from 0 (fully transparent) to 1 (no 
transparency), 0.5 is a good starting value. 

� Other graphical parameters such as border, 
cex.axis or cex.lab may be supplied. 

� The logical parameter legend  controls whether a legend is drawn (FALSE is the default); if TRUE 
it draws a simple legend in the upper right corner (legend.pos="topright"). The definition 
of the legend’s position is similar to the plot.scores function; the text labels are taken from 
levels(scores$Taxon). However, it is intended mainly as a quick information on what colour 
is used for what taxon; for presentation quality figures it is possible to set the automatic legend 
off and use the legend command. The parameters of legend are similar as elsewhere and only 
a few specific features are commented here:  
– It is useful to set pch=22, i.e. a square that can be filled with a specified colour.  
– The outline colour is controlled with the col parameter and should be the same as border in 

the discr.hist call; usually both can be omitted and the default foreground colour is used 
(black if you have not changed it using par).  

– Size of the symbols (squares) is controlled by the parameters pt.cex, the values 1.5 or 2 
usually works well. 

– The fill is defined by the pt.bg parameter and the same two colours as used for the histogram 
(the col parameter of the discr.hist function) should be used. However, the tone of the 
second colour (if other than white) depends on opacity and should be adjusted using the 
function adjustcolor with two parameters set (colour and opacity; note that the function 
has many other parameters that are not used in this particular case). 
legend(…,pt.bg=c("colour1",adjustcolor("colour2",alpha.f=opacity)),…) 
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Classificatory discriminant analysis 
Classificatory discriminant analysis with cross-validation, based on the lda function from the 
package MASS (Venables & Ripley 2002) is used.  

classif.da returns the original three columns from the data (ID, Population, Taxon), a column 
with the classification from discriminant analysis, the posterior probabilities of classification into 
each group (taxon) and a column with the correctness of classification (true/false). The results are 
formatted as a data frame and may be exported using the export.res function. The mode of cross-
validation is set by the parameter crossval. The default "indiv" (alternatively also "ind" or 
"ID") uses the standard one-leave-out method. However, as some hierarchical structure is usually 
present in the data (individuals from a population are not completely independent observations, as 
they are closer to each other than to individuals from other populations), the value "pop" sets whole 
populations as leave-out units. The latter method does not allow classification if there is only one 
population for a taxon and is more sensitive to “atypical” populations, which usually leads to a 
somewhat lower classification success rate. 
results<-classif.da(data)  # default settings 

results<-classif.da(data,crossval="indiv")  # the same 

results<-classif.da(data,crossval="ind")  # the same 

results<-classif.da(data,crossval="ID")  # the same 

results<-classif.da(data,crossval="pop")  # populations as leave-out units 

classif.samp conducts the classificatory discriminant analysis of a sample set based on an 
independent training set. This function may be used to classify hybrid populations, type herbarium 
specimens, entirely new data, etc. Note that there can be groups (taxa) in the sample set that are not 
present in the training set (such as the hybrids from the sample data, which were classified using data 
from the three pure taxa); however, the last column in the results is then meaningless (the 
classification will always be evaluated as “false”.) The results can be exported using the export.res 
function. 
results<-classif.samp(sample_data,training_data) 

classif.matrix formats the results of the above three functions as a classification matrix of taxa. 
For each taxon from the original data, the function shows the number of classifications into all taxa 
present and the percentage of correct classifications; the total percentage of correct classifications 
over all taxa is also computed. The results can be exported using the export.res function. 
matrix<-classif.matrix(results) 

classif.pmatrix computes the classification matrix for populations; for each population, it 
shows the numbers of classifications into all taxa present in the data and the percentage of correct 
classifications. The results can be exported using the export.res function. The detailed 
classification of populations is very useful, as it can reveal some atypical or incorrectly assigned 
populations. For example, most of the populations (excluding hybrids) from the sample data are 
successfully classified using the classif.da function (generally over 70% correct classifications 
and often 100%), but two populations (BABL and LES) have only 31% and 15% of correct 
classifications, respectively; the first one is probably influenced by hybridization, while the latter is 
“atypical” within the sample dataset (it may represent different subspecies). When hybrid populations 
from the sample data are analysed (using classif.samp function), some individuals are usually 
classified as C. pseudophrygia and some as C. stenolepis (and none as C. phrygia) within each 
population, which clearly demonstrates the intermediacy of these populations.  
matrix<-classif.pmatrix(results) 
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classif.barplot allow graphical output of classificatory discriminant analyses. The function 
draws a barplot with posterior probabilities of classification of each individual into each group (from 
the results of the classif.da function). This can help to identify incorrectly or uncertainly 
(correctly, but with not a high probability) classified individual or populations on a first glance. The 
parameters of the function are as follows: 

� The data frame with classification results (from the function classif.da or classif.samp). 
Note that if there are more than several hundreds of individuals, the bars will be very narrow and 
it will probably be useful to split the data into several figures (e.g. selecting data for individual 
taxa using subscripts). 
When plotted, the data are sorted alphabetically according to taxon codes and then population 
names if different order is not defined by the following two parameters. 

� tax.ord sets the user specified order in the plot, as c("taxon1","taxon2",…), using the taxa 
codes from the Taxon column of the data. 

� poplabels define population labels, as an existing character vector or 
c("population1","population2",…). If omitted, the population names are taken from the 
Population column of the data. If used, populations will be drawn in the specified order, overriding 
the tax.ord settings or the default order. 

� col defines colours of each taxon; the order of taxa is either alphabetical or that defined by the 
tax.ord parameter. If omitted, the default method of the barplot function is used, which is a 
grey-scale palette. 

� col.lines defines colour of lines separating individual populations; the standard foreground 
colour (which is usually black) is the default. 

� cex.axis, cex.lab and tcl define size of the y-axis values, labels and tickmarks in a usual 
way 

� cex.pop define size of population labels (x-axis) 

� ylab has its usual meaning, “posterior prob.” is the default 

� ref.line (logical) defines whether a reference line at certain probability (y-axis) is drawn; the 
default is FALSE. 

� ref.pars is a list (see the example below) of additional parameters to the reference line; the 
parameters can be: y (the probability value to be used, 0.5 is the default) and col, lwd  and lty 
with their usual meaning (line colour, width and type; the defaults are foreground, 1 and 2 
(dashed), respectively). 

An example is the classification of 3 species (without hybrids) from the sample data, obtained using 
classif.da with crossval="indiv": 
classif.barplot(classification,tax.ord=c("ps","st","ph"), 

col=c("green","yellow","blue"),cex.axis=0.8,cex.lab=0.8,cex.pop=0.8, 
ref.line=T,ref.pars=list(col="red",lty=3)) 
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k-nearest neighbours classification 

This method is used as a nonparametric alternative to classificatory discriminant analysis. It classifies 
an individual according to the a priori classification of its k neighbours (by Euclidean distance) using 
a majority vote. The functions are based on the knn and knn.cv functions from the package class 
(Venables & Ripley 2002). As the k-nearest neighbour method uses Euclidean distance, the characters 
are standardised to a zero mean and a unit variation in all of the functions below. 
knn.select search for the optimal k for the given data set. The functions can use two cross-
validation methods (by individuals and populations) in a similar way as the classificatory discriminant 
analysis functions. The functions the compute number of correctly classified individuals for k values 
from 1 to 30 and highlight the value with the highest success rate. Ties (i.e., when there are the same 
numbers of votes for two or more groups) are broken at random, and thus several iterations may yield 
different results. Therefore, the functions compute 10 iterations, and the average success rates for 
each k are used; the minimum and 
maximum success rates for each k are 
also displayed as error bars. Note that 
several k values may have nearly the 
same success rates; if this is the case, the 
similarity of iterations may also be 
considered. In the example displayed 
here, the highest average value is for k = 
6, but individual solutions have both 
considerably higher and considerably 
lower success rates; in comparison, k = 7 
has nearly the same average success rate, 
but the individual iterations are more 
similar to each other. 
knn.select(data) # default settings 

knn.select(data,crossval="indiv") # the same 

knn.select(data,crossval="pop") # populations as leave-out units 

knn.classif performs knn classification for the specified k; the cross-validation method is 
specified as above. The results are similar to those for classificatory discriminant analysis: they 
include the first three columns from the data (ID, Population, Taxon), a column with the knn 
classification, the proportion of votes for the “winning” group (analogous to the posterior 
probabilities in the discriminant analysis) and a column with the correctness of classifications 
(true/false). The results can be formatted as classification matrices using the classif.matrix or 
classif.pmatrix functions and both the knn results and the matrices can be exported using the 
export.res function. 
results<-knn.classif(data,k) 
results<-knn.classif(data,k,crossval="indiv") 
results<-knn.classif(data,k,crossval="pop") 
matrix<-classif.matrix(results) 
matrix<-classif.pmatrix(results) 

knn.samp conducts knn classification from a sample set using an independent training set (similarly 
to the classif.samp function for classificatory discriminant analysis). The result can be accessed 
using the classif.matrix or classif.pmatrix functions and exported using the export.res 
function. 
results<-knn.samp(sample_data,training_data,k) 
matrix<-classif.pmatrix(results) 
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